发表论文

当前位置: 首页 > 学术成果 > 发表论文 > 正文

Device-scale atomistic modelling of phase-change memory materials

来源:    发布时间 : 2024-01-15   点击量:  
年份 专利号
授权公告日 发明人
期号、页码 6, 746-754 (2023) 期刊名称 nature electronics
文章作者 Yuxing Zhou,Wei Zhang,En Ma&Volker L. Deringer

Computer simulations can play a central role in the understanding of phase-change materials and the development of advanced memory technologies. However, direct quantum-mechanical simulations are limited to simplified models containing a few hundred or thousand atoms. Here we report a machine-learning-based potential model that is trained using quantum-mechanical data and can be used to simulate a range of germanium–antimony–tellurium compositions—typical phase-change materials—under realistic device conditions. The speed of our model enables atomistic simulations of multiple thermal cycles and delicate operations for neuro-inspired computing, specifically cumulative SET and iterative RESET. A device-scale (40 × 20 × 20 nm3) model containing over half a million atoms shows that our machine-learning approach can directly describe technologically relevant processes in memory devices based on phase-change materials.


Link:Device-scale atomistic modelling of phase-change memory materials | Nature Electronics

关闭

微信公众号

地址:陕西省西安市咸宁西路28号    版权所有:西安交通大学材料创新设计中心